I can’t resist a good challenge. This one, seemingly, has remained unsolved for over a century. I am talking about the deep tolling “crystalline” bells of the Holy Grail temple in Richard Wagner’s opera, Parsifal.
Wagner himself, was never quite satisfied with solutions to this sound he heard in his head. The lowest bell being 20 semitones below the deepest in St Stephen’s cathedral in Vienna. A real church bell like this would be larger and deeper than any ever made, as far as I know. The closest would be the great Kremlin Tsar Bell, which was never really finished and was damaged by fire in 1737. The low E would most likely have to be 8 metres in diameter and over 260 tonnes! For the opera leitmotif you’d need 4, of similar proportions, to produce the C3, G2, A2, E2 peal. Real bells like this are, of course, out of the question. Too big, too heavy, too expensive and too loud.
One of the earlier sonic solutions, which was rejected upon testing circa 1882, was a set of Chinese tam-tam gongs, sourced from London. To help the perception of a clear resounding pitch, a piano / hammered dulcimer hybrid was concocted. This had 6 parallel strings for each of the four notes and was struck with a wide mallet. You can hear a later version of it on the 1926 recording conducted by Karl Muck. Steingraeber made various iterations of this Gralsklavier including a brand new one earlier this year.
Here is the combination of instruments used by the Royal Opera at Covent Garden in 1914. Giant oversize tubular bells / chimes, a single gong (hiding there in the background, middle), and another of these piano dulcimer hybrids. Quite a wonderful newspaper drawing. I love the idea of playing percussion in hats and trench coats! Perhaps it was cold backstage.
By far the most grand solution to add the metallic and somewhat discordant bell like tone plus some low end woof to the harmonious piano dulcimer was the set of brewing vat resonated bell plates constructed at Bayreuth. Absolutely huge and requiring one player each! You can also just about make these out in the Karl Muck recording. I can’t help but think that this solution was arrived at by trial and error rather than applying the techniques of Helmholtz from his 1863 paper “On the sensations of tone”.
It wasn’t long before electronics were getting in on the act. Smaller, grandfather-clock-like, metal tines with pick-ups and amplification have been used. Manipulated recordings (or “samples”) of actual bells have been used. Synthesisers have been used – including for quite some time as a favourite, the Mixtur Trautonium, one of the very first synthesisers. The latter was also a favourite of Alfred Hitchcock. He used it on the soundtrack to his film The Birds.
And yet, anything electronic or amplified and played through loudspeakers always meets with disapproval from at least one corner or other. Even the (only slightly manipulated) recordings of the actual bells from St Sulpice in Paris as used this year for Berlioz’s Symphonie Fantastique at the Proms and the Edinburgh Festival got a drubbing in the review press. I can see why. When the rest of the orchestra is real, live, organic and full of human interpretation, expression and inflection, accompanying sounds which are not do rather stick out as alien interlopers.
As my own experiments and minor successes in the realms of bass bell plates in various different metals and bass tubular chimes have been proceeding not unnoticed by the symphonic and operatic worlds, I have now been asked by 3 separate people to consider producing a good, acoustic percussion solution to the problem of these Holy Grail bells of Montsalvat. There are numerous technical issues to overcome to do with the physics of such instruments and the psycho-acoustic vagaries of the human ear and brain, not to mention logistical and practical considerations. Nonetheless, I have a handful of different ideas to go and test out. Some are a single instrument per note, some are combinations. Whether I can produce a solution which satisfies all discerning ears, who knows? Watch this space…
Update November 2015: Here is an experiment with octave unison bronze bell plates and aluminium slab metallophone